A Pharmacy Tech's Quick Reference of

Pharmacy
 Conversions

This e-Book is a publication of:

RrтеснЕ×AM

TABLE OF CONTENTS 1
The First and Last Equation You'll Need 2
Metric System 3
Apothecary System 4
Avoirdupois System 4
Common Household Measurements 5
Temperature 5
Conversion Factors 6
Converting Between Systems 7
2 Step Conversions 9

- Section 1 -

Conversions

Pharmacological Calculations are reliant on specific systems of measure and the Technician's ability to quickly and accurately convert between them. There is a simple equation that can be used to convert between any two types of units.

For example, let's assume you're tasked with converting 7.5 mL to units. First, you'll need to know how many units there are in $1 \mathrm{~mL}(100 \mathrm{u}=1 \mathrm{~mL})$.
Next you set up the first and last equation that you'll need: If I know there are 100 u in 1 mL how many units are in 7.5 mL ?

100 units is to 1 mL as X units is to 7.5 mL 100 units : $1 \mathrm{~mL}=X$ units $: 7.5 \mathrm{~mL}$

$$
\frac{100 \text { units }}{1 \mathrm{~mL}}=\frac{X \text { units }}{7.5 \mathrm{~mL}}
$$

To solve the conversion equation that you've set up,
Cross-Multiply and Divide.

$7.5 \mathrm{~mL} \times 100 \mathrm{units}=750$

750 / 1mL = 750 units

By utilizing this simple way to set up conversions, you'll have greater success in solving them. Once again, this equation can be adapted to solve most of the conversions you'll be expected to know for the Pharmacy Technician Certification Exam ${ }^{\circledR}$ and while practicing in a Pharmacy.

Many students struggle mightily when trying to grasp the Metric System. Honestly, it is not as hard as you might think. In regard to Pharmacological Calculations, we are not concerned with distance. We will, however, need to be able to convert between units of volume and weight.

Volume is defined as the amount of space that a substance occupies. When we refer to volume, we are referring to liquid measure (ex. 5 mL).
In the Metric System, Volume has two units:
milliliters (mL) and liters (L).
There are 1000 mL in every 1 L

Weight is defined as the heaviness of matter of a substance.
When we refer to weight, we are referring to solid measure (ex. 5 g).
In the Metric System, Weight has four units:
kilogram (kg), gram (g), milligram (mg), and microgram (mcg or $\mu \mathrm{g}$)
There are 1000 mcg in $1 \mathrm{mg}, 1000 \mathrm{mg}$ in 1 g , and 1000 g in 1 kg

The easiest way to convert between units in the Metric System is to move the decimal point. When we go from a larger unit to a smaller unit we will move the decimal 3 units to the right (LSR). When we move from a smaller unit to a larger unit we will move the decimal point 3 units to the left (SLL). Let's take a look at a couple of examples:
$4.48357 \mathrm{~L}=$? mL
Larger to Smaller move Right (LSR)
$4.483 \mathrm{~L} \longrightarrow 4483.57 \mathrm{~mL}$
$25.754 \mu \mathrm{~g}=? \mathrm{~g}$
Smaller to Larger move Left (SLL)
$23.75 \mu \mathrm{~g} \longrightarrow 0.00002375 \mathrm{~g}$
We moved 6 places, $\mu \mathrm{g}$ to mg to g

The Apothecary System originates from a Greek system of measure. Much like the Metric System, it concerns itself with both weight and volume however many of the units in the Apothecary System have changed or been phased out.

There is a very small unit of weight known as a grain (gr).
Be sure to note that a gr (grain) $\neq \mathrm{g}$ (gram).
1 grain (gr) $=64.8 \mathrm{mg}$
You might be familiar with 5 gr Tylenol ${ }^{\circledR}(325 \mathrm{mg})$ or 10 gr Tylenol ${ }^{\circledR}(650 \mathrm{mg})$.

In respect to volume, there are two units - the fluid dram and the fluid ounce.
1 fluid $\mathrm{dram} \approx 5 \mathrm{~mL}$ and can be represented in the following ways: $\mathcal{Z i}_{\mathrm{i}}$ or 1 fl dr .
1 fluid ounce $\approx 30 \mathrm{~mL}$ can be shown as follows: $\} i$ or 1 fl oz .

The number of drams or fluid ounces is reflected by the Roman numeral to the right of the appropriate symbol. 5 drams is shown as: $Z v$

The Avoirdupois System originates from France and is commonly used today in the United States to describe units of weight. This system, unlike the Metric System and Apothecary System, does not have any units of volume.

There is only one conversion factor that you'll need to know for the Avoirdupois System:

$$
1 \text { pound (lb.) = } 16 \text { ounces (oz.) }
$$

Be sure to note that an oz. (solid) $=\mathrm{fl}$ oz. (liquid).

Common Household Measurements include many measures used in both cooking and everyday life. This system only concerns volume (liquid measure).

Common Household Measurements -		
Unit	Abbreviation(s)	Conversion Factor
Teaspoonful	t or tsp	$1 \mathrm{t}=5 \mathrm{~mL}$
Tablespoonful	T or Tbsp	$1 \mathrm{~T}=15 \mathrm{~mL}$
Fluid Ounce	fl oz.	1 fl oz. $=29.57 \mathrm{~mL} \approx 30 \mathrm{~mL}$
Pint	pt	$1 \mathrm{pt}=473 \mathrm{~mL} \approx 480 \mathrm{~mL}$
Quart	qt	$1 \mathrm{qt}=2 \mathrm{pt}$
Gallon	gal	1 gal $=4 \mathrm{qt}$

There are two systems of measure used to describe Temperature: Celsius and Fahrenheit. Celsius (centigrade) has been adopted in most countries and is based on the freezing point $\left(0^{\circ} \mathrm{C}\right)$ and boiling point of water $\left(100^{\circ} \mathrm{C}\right)$. Fahrenheit isn't as easily scaled, but for perspective, the freezing point of water is $32^{\circ} \mathrm{F}$ and the boiling point of water is $212^{\circ} \mathrm{F}$. In order to convert between the two systems:

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32 \\
& { }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}-32 \times(5 / 9)
\end{aligned}
$$

If you prefer to only remember one equation:

$$
9 x^{\circ} \mathrm{C}=5 x^{\circ} \mathrm{F}-160
$$

CELSIUS

Pharmaceutical Conversion Factors

Exact Liquid Measure
100units $=1 \mathrm{~mL}$
$20 \mathrm{gtts}=1 \mathrm{~mL}$
1 cc or $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$
$1 \mathrm{tsp}=5 \mathrm{~mL}$
1 Tbsp = 15 mL
$3 i=5 \mathrm{~mL}$
$1 \mathrm{fl} \mathrm{oz}=29.57 \mathrm{ml}$
$\xi \mathrm{i}=29.57 \mathrm{~mL}$
$1 \mathrm{pt}=473 \mathrm{~mL}$
$1 \mathrm{qt}=946 \mathrm{~mL}$
$1 \mathrm{qt}=2 \mathrm{pt}$
$1 \mathrm{~L}=1000 \mathrm{~mL}$
$1 \mathrm{gal}=3784 \mathrm{~mL}$
$1 \mathrm{gal}=4 \mathrm{qt}$

Exact Solid Measure

1000 mcg or $1000 \mu \mathrm{~g}=1 \mathrm{mg}$
$64.8 \mathrm{mg}=1 \mathrm{gr}$
$1000 \mathrm{mg}=1 \mathrm{~g}$
$28.35 \mathrm{~g}=1 \mathrm{oz}$
$454.54 \mathrm{~g}=1 \mathrm{lb}$
$1000 \mathrm{~g}=1 \mathrm{~kg}$
$2.2 \mathrm{lbs}=1 \mathrm{~kg}$

Approximate Liquid Measure (if applicable)
n/a
n/a
n/a
n/a
n/a
n/a
$1 \mathrm{fl} \mathrm{oz} \approx 30 \mathrm{~mL}$
$\xi i \approx 30 \mathrm{~mL}$
$1 \mathrm{fl} \mathrm{oz} \approx 480 \mathrm{~mL}$
n/a
n/a
n/a
$1 \mathrm{gal} \approx 4000 \mathrm{~mL}$

Approximate Solid Measure (if applicable) n/a
$65 \mathrm{mg} \approx 1 \mathrm{gr}$
n/a
$30 \mathrm{~g} \approx 1 \mathrm{oz}$
$480 \mathrm{~g} \approx 1 \mathrm{lb}$
n/a
n/a

The ability to convert between all of the systems listed so far in this guide is critical.

Example A: if a prescriber writes:

Humalog Insulín
10wscam x30 Q.S

You'll be tasked with dispensing the correct package size. While the patient and doctor measure insulin in units, pharmacy personnel dispense it in milliliters. Referring to the conversion table on the previous page,

1. You'll find that there are 100 units in every 1 mL .

This can be rewritten 100units:1mL.
2. Well we want to know how many mL there are in 10 u (per the prescription).

That can be rewritten 10units:XmL
3. Combine \#1 and \#2

100units:1mL::10units:XmL
4. Now let's translate that into something we can solve:

$$
\frac{100 \text { units }}{1 \mathrm{~mL}}=\frac{10 \text { units }}{\mathrm{XmL}}
$$

5. Cross-Multiply and Divide
$1 \mathrm{~mL} \times 10$ units $=10 / 100$ units $=0.1 \mathrm{~mL}$
6. We've determined there are 0.1 mL for every 100 units
7. So now we know that the patient will administer 0.1 mL daily for 30 days (3.0 mL)

Example B:

? gtts $=8 \mathrm{~mL}$
$\frac{20 \mathrm{gtts}}{1 \mathrm{~mL}}=\frac{\mathrm{X} \text { gtts }}{8 \mathrm{~mL}}$

1. Set up our conversion factor.

2. Set up our conversion.
3. Cross Multiply and Solve $20 \mathrm{gtts} \times 8 \mathrm{~mL}=160 / 1 \mathrm{~mL}=160 \mathrm{gtts}$

Example C:

? lbs $=24 \mathrm{~kg}$
$\frac{1 \mathrm{~kg}}{2.2 \mathrm{lbs}}=\frac{24 \mathrm{~kg}}{\mathrm{XIbs}}$

1. Set up our conversion factor.
2. Set up our conversion.
3. Cross Multiply and Solve
$2.2 \mathrm{lbs} \times 24 \mathrm{~kg}=52.8 / 1 \mathrm{~kg}=52.8 \mathrm{lbs}$

Example D:

$\begin{array}{ll}? \mathrm{~mL}=2 \mathrm{pt} \\ \frac{1 \mathrm{pt}}{473 \mathrm{~mL}}=\frac{2 \mathrm{pt}}{\mathrm{XmL}} & \begin{array}{l}\text { 1. Set up our conversion factor. } \\ \text { 2. Set up our conversion. }\end{array} \\ & \begin{array}{l}\text { 3. Cross Multiply and Solve } \\ 473 \mathrm{~mL} \times 2 \mathrm{pt}=976 / 1 \mathrm{pt}=976 \mathrm{~mL}\end{array}\end{array}$

Example E:

? $\mathrm{mg}=1.5 \mathrm{gr}$
$\frac{1 \mathrm{gr}}{64.8 \mathrm{mg}}=\frac{1.5 \mathrm{gr}}{\mathrm{Xmg}}$

1. Set up our conversion factor.
2. Set up our conversion.
3. Cross Multiply and Solve
$64.8 \mathrm{mg} \times 1.5 \mathrm{gr}=66.3 / 1 \mathrm{gr}=66.3 \mathrm{gr}$

Keys to remember when setting up conversions:

- Put the conversion factor on the left
- Notice how the units line up, same units on top, same units on the bottom
- Cross Multiply the only two numbers that are across from one another
- Divide that answer by the last number remaining
- Your answer will be the same unit as your variable (X).

Rrтech

Occasionally, you'll be tasked with converting between two types of measurement that we do not know the conversion factor for. Like if you were asked to find how many pints are in 3 Liters. These are known as Two Step Conversions, because you'll have to complete two conversion equations in order to solve the original question.
?pts = 3L

- We know there are 473 mL in every pint, and 1000 mL in every Liter.
- Milliliters are what is known as our intermediary.
- An intermediary is a unit we can convert to (in one step) with BOTH the given component of the conversion (3L) and the unknown (?pts).
- Here's how it all plays out:

1. Convert our known to our intermediary unit.
$3 \mathrm{~L} \rightarrow \mathrm{~mL}$
$\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=\frac{3 \mathrm{~L}}{\mathrm{XmL}}$
We find that $3 \mathrm{~L}=3000 \mathrm{~mL}$.
2. Now that we know that we have 3000 mL as our known, we can do the second step of the conversion:
$\frac{1 \mathrm{pt}}{473 \mathrm{~mL}}=\frac{X \mathrm{pt}}{3000 \mathrm{~mL}}$
We find that there are 6.34 pints in 3000 mL .
3. Our Solution: There are 6.34pts in 3L.

More information on this topic, as well as EVERYTHING you'll need to know to pass the Pharmacy Technician Certification Exam, can be found at www.RxTechExam.com

RxTechExam offers a completely online and self-paced courses that will ensure your success on the PTCE, without breaking the bank, or interrupting your busy schedule.
Choose your plan \quad silver \quad gold \quad platinum

We hope you enjoyed our Free Guide on Pharmacy Conversions \& Calculations!

